

doi:10.1016/S0016-7037(03)00165-0

Solid-liquid equilibria of Mg(OH)₂(cr) and Mg₂(OH)₃Cl·4H₂O(cr) in the system Mg-Na-H-OH-Cl-H₂O at 25°C

M. ALTMAIER,* V. METZ, V. NECK, R. MÜLLER, and TH. FANGHÄNEL Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, Postfach 3640, D- 76021 Karlsruhe, Germany

(Received November 11, 2002; accepted in revised form February 13, 2003)

Abstract—The solubility of crystalline $Mg(OH)_2(cr)$ was determined by measuring the equilibrium H⁺ concentration in water, 0.01–2.7 m MgCl₂, 0.1–5.6 m NaCl, and in mixtures of 0.5 and 5.0 m NaCl containing 0.01–0.05 m MgCl₂. In MgCl₂ solutions above 2 molal, magnesium hydroxide converted into hydrated magnesium oxychloride. The solid-liquid equilibrium of $Mg_2(OH)_3$ Cl·4H₂O(cr) was studied in 2.1–5.2 m MgCl₂. Using known ion interaction Pitzer coefficients for the system Mg-Na-H-OH-Cl-H₂O (25°C), the following equilibrium constants at I = 0 are calculated:

$$\begin{split} Mg(OH)_{2}(cr) &+ 2 \text{ H}^{+} \Leftrightarrow Mg^{2+} + 2 \text{ H}_{2}O & \log K^{\circ}_{s} = 17.1 \pm 0.2 \\ Mg_{2}(OH)_{3}Cl \cdot 4H_{2}O(cr) &+ 3 \text{ H}^{+} \Leftrightarrow 2 Mg^{2+} + Cl^{-} + 7 \text{ H}_{2}O & \log K^{\circ}_{s} = 26.0 \pm 0.2 \end{split}$$

The experimental results are discussed with regard to discrepancies in frequently used databases and computer codes for geochemical modeling, such as EQ3/6, Geochemist's Workbench and CHESS. *Copyright* © 2003 *Elsevier Ltd*

1. INTRODUCTION

The solubility of brucite Mg(OH)₂(cr) and magnesium oxychloride Mg₂(OH)₃Cl·4H₂O(cr) is of particular interest with regard to natural aquifer systems containing predominantly magnesium or sodium chloride. In the context of nuclear waste disposal in underground salt mines, MgO has been proposed as additive to backfill materials in the Waste Isolation Pilot Plant (WIPP) in New Mexico (e.g., Monastra and Grandstaff, 1999; Krumhansl et al., 2000). For the Asse salt mine in Germany, the addition of brucite has been proposed recently by Schüssler et al. (2002). The capacity of brucite to buffer pH and to scavenge carbonate (due to the limited solubility of magnesium carbonates) is considered to minimize radionuclide, in particular actinide solubilities which are very sensitive to variation of pH and carbonate concentration. As the geochemical environment of a potential nuclear waste repository is severely affected by the addition of brucite, performance assessment calculations on the long-term safety require reliable and precise thermodynamic data. Geochemical modeling of highly saline systems relies on computer codes like EQ3/6 (Wolery, 1992) or Geochemist's Workbench (GWB) (Bethke, 2000) in combination with thermodynamic databases including standard state equilibrium constants and ion interaction coefficients to calculate the water activity and activity coefficients of aqueous species with the ion interaction model of Pitzer (1991) implied in these codes.

The standard states (index °) adopted for solids and solvent H_2O is one unit activity and that for aqueous species corresponds to unit activity of the species in a hypothetical one molal solution. If not otherwise stated, they refer to T = 298.15 K and p = 1 bar. A comprehensive data set for the system

Mg-Na-H-OH-Cl-H₂O (25° C) was evaluated by Harvie et al., 1984 (Table 1). The standard Gibbs energies proposed in the HMW model and the corresponding solubility constants for the reactions:

$$Mg(OH)_{2}(cr) + 2 H^{+} \Leftrightarrow Mg^{2+} + 2 H_{2}O$$

$$(\log K_{s}^{\circ} = 17.11)$$

and

$$Mg_{2}(OH)_{3}Cl \cdot 4H_{2}O(cr) + 3 H^{+} \Leftrightarrow 2 Mg^{2+} + Cl^{-} + 7 H_{2}O$$

$$(\log K^{\circ}_{s} = 26.03)$$

were adopted in the databases "data0.hmw.V8.R6(1997)" of the EQ3/6 code and "thermo_hmw.dat" (release GWB 3.1.2, 2001) of the GWB code. The frequently used database "data0.pit.V8.R6(1997)" for the EQ3/6 code includes also the HMW set of ion interaction parameters but considerably changed values of log $K^{\circ}_{s}(Mg(OH)_{2}(cr)) = 16.30$ and log $K^{\circ}_{s}(Mg_{2}(OH)_{3}Cl\cdot4H_{2}O) = 25.83$. The latter log K°_{s} values are also included in databases for systems of low or moderate salinity (in combination with extended Debye-Hückel formalisms for the calculation of activity coefficients), such as "data0.com.V8.R6" of the EQ3/6 code, "thermo_com.dat" of the GWB code and "chess. tdb" of the CHESS code (Van der Lee, 1998).

The difference in the solubility constant of magnesium oxychloride (0.2 log-units) seems to be due to inconsistencies arising from the different $\Delta_{\rm f} G^{\circ}$ values for H₂O(l), OH⁻ and particularly Mg²⁺ (cf. Table 1), because the only reference cited in the databases for the EQ3/6 code is that of Harvie et al. (1984). In this context it should be mentioned that (Harvie et al., 1984) pointed out that the experimental data available for Mg₂(OH)₃Cl·4H₂O(cr) are inconsistent. The large discrepancy in the solubility constant of brucite (0.8 log-units) is mainly due

^{*} Author to whom correspondence should be addressed, (altmaier@ine. fzk.de), (neck@ine.fzk.de).

3596

Table 1. Molar standard Gibbs	energies of formation	and ion interaction Pitz	zer coefficients for the sv	stem Mg-Na-H-OH-Cl-H ₂ O	at 25°C.

		o(0) (1 1=1)	o(i) (1 1=1)	$c\phi a^{2} = 1^{-2}$
1	J	$\beta^{(0)}_{ij}$ (kg mol ⁻¹)	$\beta^{(i)}_{ij}$ (kg mol ⁻¹)	$C^{\phi}_{ij}(kg^2 mol^{-2})$
Na ⁺ Mg ²⁺ MgOH ⁺ H ⁺	Cl ⁻	0.0765	0.2664	0.00127
Mg^{2+}	C1 ⁻	0.35235	1.6815	0.00519
MgOH ⁺	Cl ⁻	-0.10	1.658	0
H ⁺	C1 ⁻	0.1775	0.2945	0.0008
Na ⁺	OH-	0.0864	0.253	0.0044
i	j	k	θ_{ij} (kg mol ⁻¹)	$\psi_{ijk}(kg^2 mol^{-2})$
Na ⁺	Mg^{2+} Na ⁺ Mg^{2+} Na ⁺	Cl ⁻	0.07	-0.012
H^+	Na ⁺	C1 ⁻	0.036	-0.004
H^+	Mg^{2+}	Cl ⁻	0.10	-0.011
$MgOH^+$	Na ⁺	Cl ⁻	0	0
MgOH ⁺	Mg^{2+}	Cl ⁻	0	0.028
OH-	Cl [–]	Na^+	-0.050	-0.006

	$\Delta_{\rm f} {\rm G}_{\rm m}^{\rm o} ~ ({\rm kJ}~{\rm mol}^{-1})$		
	Harvie et al. (1984) "data0.hmw"	SUPCRT 92 (Johnson et al., 1992) "data0.pit", "data0.com", "data0.sup"	
H ⁺ (aq)	0	0	
OH ⁻ (aq)	-157.25	-157.30	
$H_2O(1)$	-237.14	-237.18	
$Cl^{-}(aq)$	-131.27	-131.29	
$Mg^{2+}(aq)$	-454.81	-453.98	
MgOH ⁺ (aq)	-624.55	-623.90 ^{b)}	
$Mg(OH)_2(cr)$	-831.44	-835.32^{c}	
$Mg_2(OH)_3Cl \cdot 4H_2O(cr)$	-2552.33	-2552.08	

^{a)} As the ion product of water in Mg solutions is not known, the binary parameters for Mg-OH, $\psi_{Mg-OH-Cl}$ and $\psi_{Mg-Na-OH}$ cannot be determined. They are set equal to zero.

b) Only included in "data0.sup" (neglected in "data0.pit" and "data0.com").

^{c)} From Helgeson et al. (1978).

to the different values of $\Delta_f G^{\circ}_{m}(Mg(OH)_2(cr)) = - 831.44 \text{ kJ}$ mol^{-1} (Harvie et al., 1984) and -835.32 kJ mol^{-1} included in the other databases mentioned above. The latter value comes from the SUPCRT 92 algorithm (Johnson et al., 1992) including data from Helgeson et al. (1978). The discrepant values of $\log K^{\circ}_{s}(Mg(OH)_{2}(cr))$ included in databases relying on the HMW model and in other databases lead to significantly different equilibrium pH values in performance assessment calculations for the near field in a nuclear waste repository. Ultimately, this can cause pronounced errors in the predicted actinide solubilities, which considerably depend on pH (cf., Fanghänel and Neck, 2002). For these reasons we have reinvestigated the solubility equilibria of brucite and magnesium oxychloride. In addition, the applicability of the HMW set of ion interaction Pitzer coefficients is tested for dilute to concentrated MgCl₂ and NaCl solutions.

2. EXPERIMENTAL

2.1. Chemicals

Crystalline Mg(OH)₂(cr) (purity = 99%) was purchased from Fluka, MgCl₂·6H₂O (p.a.) and NaCl (p.a.) from Merck. The crystallite diameter of the solid Mg(OH)₂(cr) was determined by scanning electron microscopy (SEM) to be in the range of 0.3–1.0 μ m. The stoichiometric composition, i.e., the water content of the MgCl₂·6H₂O was confirmed by chloride analysis. The H⁺ and OH⁻ standard solutions used for the calibration of the pH electrodes were prepared with HCl titrisol (Merck) and carbonate-free NaOH solution (Baker). All solutions were prepared with purified water from a Milli-Q-academic apparatus (Millipore). Before its use, CO_2 was removed by bubbling argon through the Milli-Q water.

2.2. Solubility Experiments

All samples were prepared and stored at $22 \pm 2^{\circ}C$ (constant room temperature) in an argon glove box. An amount of 0.3 g Mg(OH)₂(cr) was added to 200 mL solution. The H⁺ concentrations were measured in aliquots taken from the samples as a function of equilibration time ranging from a few days to 14 months. In a first set of experiments performed in Duran glass vials, the dissolution of glass (SiO₂(am) + (4-x) OH⁻ \rightarrow H_xSiO₄^{(4-x)-} + (2-x) H₂O) caused a significant and continuous decrease in pH and no equilibrium state was reached up to 130 d. Therefore, all further experiments were performed in polyethylene vials. In solutions of low Mg concentrations ($m_{MgCl2} = 0-0.05$ mol kg⁻¹), the values of m_{Mg} were determined at the end of each experiment. The analytical uncertainty of the ICP-MS analysis (ELAN 6100, Perkin Elmer) is 5-10%. For this purpose aliquots of the samples were measured in duplicate, after ultracentrifugation for 60 min at 90000 rpm (relative centrifugal force \sim 5·10⁵ g) and after 30 kD ultrafiltration (MicrosepTM, Filtron), to ensure that the measured Mg concentration does not include contributions from solid particles or colloids. The initial and final solids were investigated by X-ray powder diffraction with a Bruker D8 diffractometer equipped with a Si(Li) solid state detector.

2.3. pH Measurements

Combination pH electrodes (type ROSS, Orion), freshly calibrated against dilute standard pH buffers (pH 1–10, Merck), were used to determine the molal H^+ concentration m_{H^+} . The pH value measured in

dilute test solutions, for which the individual ionic activity coefficient γ_{H^+} can be calculated with extended Debye-Hückel equations, is related to the H^+ activity a_{H^+} by

$$pH = -\log a_{H^+} = -\log m_{H^+} - \log \gamma_{H^+}$$
(1)

In salt solutions of ionic strength $I > 0.1 \text{ mol kg}^{-1}$, the measured pH value (pH_{exp}) is an operational apparent value (Felmy et al., 1991; Fanghänel et al., 1996), which is related to the molal H⁺ concentration by

$$-\log m_{H^+} = pH_{exp} + A \tag{2}$$

with

$$A = \log \gamma_{H^+} + \Delta E_i (F/RT \ln 10)$$
(3)

where F, R, and T are the Faraday constant, gas constant, and temperature (in Kelvin), respectively. The parameter A includes the individual activity coefficient γ_{H^+} and a contribution ΔE_j from the variation of the liquid junction potential E_j when measuring dilute pH buffer solutions for calibration and saline test solutions. For a given pH electrode system, junction electrolyte, and temperature, A depends only on the composition and concentration of the test solution. It was determined as a function of the NaCl and MgCl₂ molality by measuring pH_{exp} in corresponding salt solutions containing known concentrations of 0.001–0.05 m HCl. The experimental values of A in NaCl and MgCl₂ solutions of I > 0.1 mol kg⁻¹ can be expressed empirically by the following polynoms:

$$\begin{split} A_{\text{NaCl}} &= -0.0988 + 0.1715 \; m_{\text{NaCl}} + 0.0013 \; (m_{\text{NaCl}})^2 \\ A_{\text{MgCl}_2} &= -0.0887 + 0.4549 \; m_{\text{MgCl}_2} + 0.0172 \; (m_{\text{MgCl}_2})^2 \end{split}$$

In addition, $-\log m_{H^+}$ was determined by an independent second method proposed by Knauss et al. (1990), i.e., by measuring the activity of HCl (a_{HCl}) with a liquid junction free cell consisting of a H⁺ sensitive glass electrode and a chloride sensitive electrode:

$$\log a_{\rm HCl} = 1/2 \left(\log m_{\rm H^+} + \log m_{\rm Cl^-} + \log \gamma_{\rm H^+} + \log \gamma_{\rm Cl^-} \right) \quad (4)$$

This cell was calibrated against 0.001–0.1 m HCl solutions and 0.01 m NaOH solutions in 0.05–5.6 m NaCl. The H⁺ molality of a test solution was then derived from measured log $a_{\rm HCb}$ given log $m_{\rm Cl}{}^-$ and log $\gamma_{\rm HCl}$ = 1/2 (log $\gamma_{\rm H^+}$ + log $\gamma_{\rm Cl}{}^-$) calculated with the Pitzer equations and the HMW set of ion interaction coefficients. It should be noted that $a_{\rm HCl}$ measurements in concentrated MgCl₂ solutions exceed the proposed application range of the chloride sensitive electrode (Orion). To avoid potential effects of corrosion, the electrode surface was polished after each measurement to ensure a reproducibility within \pm 0.02 log $a_{\rm HCl}$ units.

Log a_{HCl} was measured at the end of each experiment and at different times in 0.5 and 5.6 m NaCl and in 0.25, 2.67 and 5.15 m MgCl₂. H⁺ concentrations measured by the two methods described above were generally consistent within \pm 0.04 log-units, with the exception of the values in concentrated MgCl₂ which showed a certain systematic deviation. The average deviation between the $-\log m_{H^+}$ values determined with ROSS electrodes and those calculated from a_{HCl} measurements was 0.01 \pm 0.03 in 0.5 m NaCl, 0.00 \pm 0.03 in 5.6 m NaCl, 0.02 \pm 0.04 in 0.25 m MgCl₂, 0.04 \pm 0.03 in 2.67 m MgCl₂, and 0.08 \pm 0.04 in 5.15 m MgCl₂.

3. RESULTS AND DISCUSSION

Figures 1 and 2 show typical results obtained in solubility experiments with Mg(OH)₂(cr), i.e., the H⁺ molality measured as a function of time. After a slight decrease of $-\log m_{H^+}$ within the first month, the constant values measured after 50 to 350 d indicate that equilibrium was achieved. The pH decrease observed at the higher MgCl₂ molalities of 2.67 and 5.15 mol kg⁻¹ (cf. Fig. 3) is caused by the transformation of Mg(OH)₂(cr) into magnesium oxychloride. The reproducible results obtained in two experiments (shown in Fig. 3) as filled

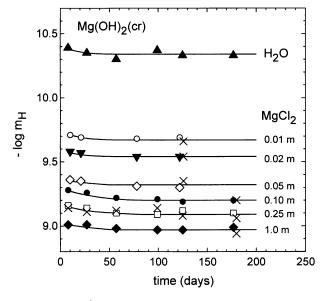


Fig. 1. Molal H⁺ concentrations measured as a function of time after adding Mg(OH)₂(cr) to pure water and 0.01–1.0 m MgCl₂ solutions. The values shown as crosses (\times) were derived from a_{HCl} measurements.

circles and open triangles) clearly indicate that in 2.67 m $MgCl_2$ solution, the initial magnesium hydroxide remained (meta)stable for some weeks and then slowly converted into oxychloride, whereas in 5.15 m $MgCl_2$ the solid transformation started from the beginning. The solid conversion was confirmed by X-ray diffraction (cf. Fig. 4). The initial $Mg(OH)_2(cr)$ used, which remains stable in water and NaCl and dilute $MgCl_2$

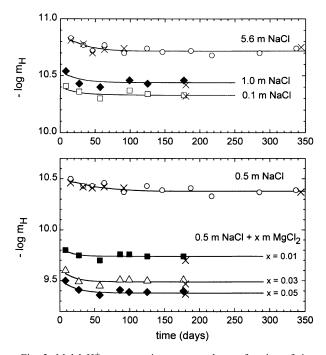


Fig. 2. Molal H⁺ concentrations measured as a function of time during the solubility experiments with Mg(OH)₂(cr) in NaCl solutions (× from a_{HCl} measurements).

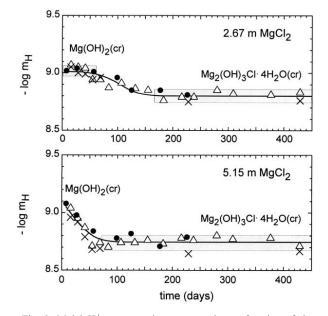


Fig. 3. Molal H⁺ concentrations measured as a function of time during the solubility experiments in 2.67 and 5.15 m MgCl₂ solution. The filled circles and open triangles show the two runs of experiments (×from a_{HCl} measurements).

solutions, shows the typical X-ray diffraction pattern of brucite as sharp peaks. These peaks are absent in the XRD patterns recorded from the solids in the final 2.67 and 5.15 m MgCl₂ solutions. These solids are identified as triclinic Mg₂(OH)₃Cl·4H₂O(cr) according to the JCPDS files 36-0388 and 07-0412 (JCPDS, 2001). Moreover there are no indications of the presence of other magnesium oxychloride hydrate phases like Mg₃(OH)₅Cl·4H₂O(cr). Scanning electron microscopy

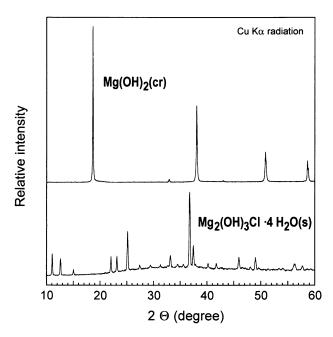


Fig. 4. X-ray diffraction patterns of the $Mg(OH)_2(cr)$ used and the magnesium oxychloride formed in 2.67 m $MgCl_2$.

(SEM) coupled with energy-dispersive spectrometry (EDS) showed needle-like crystals with a length of $10-100 \ \mu m$ and confirmed the element ratio of Mg:Cl:O = 2:1:7.

3.1. Solubility Constant of Mg(OH)₂(cr)

The solubility constant of brucite is calculated from the equilibrium H^+ molalities in the various MgCl₂-NaCl-H₂O solutions (cf. Table 2) according to

$$\log \mathrm{K}^{\circ}_{\mathrm{s}} \left(\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{cr}) \right) = \log \left(\mathrm{m}_{\mathrm{Mg}^{2+}} \gamma_{\mathrm{Mg}^{2+}} \right)$$

$$-2 (\log (m_{H^+} \gamma_{H^+}) + 2 \log a_w$$
 (5)

The activity coefficients γ_{H^+} and $\gamma_{Mg^{2+}}$ and the water activity a_w are calculated with the Pitzer parameters of the HMW model. The formation of the magnesium hydroxide complex MgOH⁺

$$Mg^{2+} + H_2O \Leftrightarrow MgOH^+ + H^+$$

with log $K^{\circ}_{1} = -11.81$ (Harvie et al., 1984) or log $K^{\circ}_{1} =$ -11.68 ± 0.05 , as determined more recently by Palmer and Wesolowski (1997) from potentiometric experiments in 0.1-5 m NaCl, is calculated to be negligible in all MgCl₂ containing solutions ($-\log m_{H^+} \le 10$). In 0–5.6 m NaCl the complex MgOH⁺ is also of minor importance. In equilibrium with Mg(OH)₂(cr) it contributes less than 5% to the total Mg concentration. The log K°_{1} value of the HMW model (also included in the EQ3/6 databases "data0.hmw" and "data0.sup" but neglected in "data0.pit" and "data0.com") was taken from the study of McGee and Hostetler (1975). These authors also demonstrated that possible experimental errors would generally lead to an overestimation of MgOH⁺, e.g., in the studies of Stock and Davies (1948) and Hostetler (1963) from which Baes and Mesmer (1976) selected log $K^{\circ}_{1} = -11.44 \pm 0.1$. However, even this larger hydrolysis constant or the use of the most recent values determined by Palmer and Wesolowski (1997) would have no significant impact on the calculated solubility constants.

The total Mg concentrations determined by ICP-MS at the end of the experiments in water and 0.1–5.6 m NaCl were significantly higher than m_{OH} -/2 as expected from the dissolution reaction. As a large excess of Mg ($m_{Mg} >> m_{OH}$ -/2) cannot be explained by the hydrolysis species MgOH⁺, it must be due to trace impurities of soluble Mg salts in the chemicals used, i.e., in Mg(OH)₂(cr) and NaCl p.a. (reported Mg content: < 0.001%). Using the experimentally determined Mg concentrations to calculate log K°_s from the equilibrium H⁺ molalities in these experiments, the solubility constants are reasonably consistent with those derived from the measurements in 0.01–2.67 m MgCl₂ and in 0.5 and 5.0 m NaCl containing 0.01–0.05 m MgCl₂ (Table 2).

A small but noticeable difference is observed for the mean values ($\pm 2\sigma$, where σ is the standard deviation) from the experiments in 0–2.67 m MgCl₂ (log K°_s = 17.16 \pm 0.10) and from those in NaCl-predominant solutions with $m_{Mg^{2+}} << m_{Na^+}$ (log K°_s = 17.01 \pm 0.10). In this context it should be noted that the log K°_s values calculated by applying Eqn. 5 include an experimental uncertainty from the measured concentrations (log $m_{Mg^{2+}} - 2 \log m_{H^+}$), which is below \pm 0.1, and also an uncertainty from the calculated trace activity coeffi-

Table 2. Solutions in equilibrium with $Mg(OH)_2(cr)$ and evaluation of the solubility constant (all concentrations are in mol/kg H_2O)

input concentrations		measured equilibrium concentrations			
m_{MgCl_2}	m _{NaCl}	$-log \ m_{H^+}$	\logm_{Mg}	$\logK^{\circa)}_{\ s}$	
0	0	10.34	-3.55	17.10	
0.01	0	9.67	-2.02	17.19	
0.02	0	9.54	-1.73	17.17	
0.05	0	9.32	-1.30^{b}	17.10	
0.10	0	9.20	-1.00^{b}	17.10	
0.25	0	9.09	-0.60^{b}	17.17	
1.00	0	8.97	0.00^{b}	17.21	
2.67	0	9.00	0.43 ^{b)}	17.22	
			mean value:	mean value: 17.16 ± 0.10	
0	0.10	10.33	-3.38	17.04	
0	0.50	10.38	-3.28	17.07	
0	1.00	10.45	-3.30	17.08	
0	5.61	10.72	-3.33	16.92	
0.01	0.50	9.74	-1.99	17.08	
0.03	0.50	9.49	-1.53	17.03	
0.05	0.50	9.38	-1.31	17.02	
0.01	5.00	10.04	-1.94	17.03	
0.03	5.00	9.79	-1.50	16.96	
0.05	5.00	9.70	-1.30	16.98	
	5.00	2.10		17.01 ± 0.10	

 $^{\rm a)}$ Calculated with the HMW model (including the complex MgOH⁺) from the equilbrium $-\log m_{\rm H^+}$ values and the total Mg concentration measured by ICP-MS.

 $^{\rm b)}$ Not measured, $m_{\rm Mg}$ is taken from the initial solution composition.

cients of Mg²⁺ and H⁺. In particular for traces of Mg²⁺ in concentrated NaCl solutions, the values of $\gamma_{Mg^{2+}}$ may become somewhat inaccurate, because the ternary interaction parameters θ_{Mg-Na} and $\psi_{Mg-Na-Cl}$ are based on isopiestic data in MgCl₂-NaCl mixtures where Mg²⁺-Mg²⁺ interactions are not negligible (Pitzer, 1991). On the other hand, all experimental results are reasonably well described with the HMW set of ion interaction coefficients and an overall mean value of

$\log K^{\circ}_{s}(Mg(OH)_{2}(cr)) = 17.1 \pm 0.2$

which agrees with numerous previous studies. The most extensive study of the brucite solubility at 25°C was made by Hostetler (1963). Using somewhat different experimental procedures, three sets of dissolution experiments in dilute solutions led to log $K_{s}^{\circ} = 16.95 \pm 0.16$, 17.26 ± 0.10 and 16.84 ± 0.05 (2σ) . The decrease of pH and log K°_s observed in precipitation experiments was ascribed to the increase in particle size during the aging process. Hostetler (1963) also discussed the literature data at 18-25°C published before his study and the lowest value cited was log $K_{s}^{\circ} = 16.70$. The solubility constant of log $K_{s}^{\circ} = 16.84$ proposed by Hostetler (1963) was accepted in the reviews of Baes and Mesmer (1976) and Robie and Hemingway (1995). Harvie et al. (1984) selected log $K^{\circ}_{s} = 17.11$ from a later study of McGee and Hostetler (1973, 1977) who extended the solubility studies with Mg(OH)2(cr) to the temperature range of 10-90°C. Liu and Nancollas (1973) determined a very similar value of log $K^{\circ}_{s} = 17.14 \pm 0.03$ by conductometric methods in dissolution-precipitation experiments at 25°C. Brown et al. (1996) determined log K° at 60-200°C from precipitation experiments in 0.1 and 1.0 m NaCl. Combining their data with those of McGee and Hostetler (1977)

they calculated log K°_{s} = 17.13 at 25°C. For 22 ± 2°C, the temperature of the present study, the linear regression of Brown et al. (1996) yields a somewhat higher constant of log K_{s}° = 17.32 ± 0.13 . These experimental solubility constants are further corroborated by a value of log $K^{\circ}_{s}(Mg(OH)_{2}(cr)) =$ 16.97 derived by Baes and Mesmer (1976) from thermochemical data given by (Pitzer and Brewer 1961). To our knowledge there is no experimental solubility study which would justify the selection of thermodynamic data corresponding to an equilibrium constant close to log $K_s^\circ = 16.30$ at 25°C as calculated from $\Delta_{f}G^{\circ}{}_{298},\,\Delta_{f}H^{\circ}{}_{298}$ and $S^{\circ}{}_{298}$ selected for brucite in the review of Helgeson et al. (1978) and included in many databases. Helgeson et al. (1978) used high pressure/temperature data on the univariant equilibrium between Mg(OH)₂(cr) and MgO(cr) in combination with calorimetric data for MgO(cr) and auxiliary data for the standard molal volume, heat capacity coefficient and entropy for brucite. It will be shown below that the discrepant solubility constant is primarily due to the standard entropy of brucite ($S^{\circ}_{298} = 63.14 \text{ J K}^{-1} \text{ mol}^{-1}$) adopted from Robie and Waldbaum (1968).

The standard enthalpy of reaction derived by Brown et al. (1996) from their own solubility data and those of McGee and Hostetler (1977), $\Delta_r H^{\circ}_{298} = -112 \text{ kJ mol}^{-1}$, is in good agreement with $\Delta_r H^{\circ}_{298} = -111.15 \text{ kJ mol}^{-1}$ derived by Königsberger et al. (1999) from brucite solubilities in 3.5 and 3.0 m NaClO₄ at 25 and 50°C, respectively. It is also fairly consistent with $\Delta_r H^{\circ}_{298} = -114.0 \text{ kJ mol}^{-1}$ calculated from the data selected by Wagman et al. (1982) and Robie and Hemingway (1995). However, Königsberger et al. (1999) rely on an entropy value of S°₂₉₈(Mg(OH)₂(cr)) = 63.2 J K⁻¹ mol⁻¹ adopted by Robie and Hemingway (1995) from the tables of Wagman et al. (1982), which finally leads to log K°₈ = 16.3.

None of the reviews cited above discuss this entropy value for brucite and the underlying original data. They all lead back to Robie and Waldbaum (1968) who cite an uncritical collection of entropy data (Kelley and King, 1961) which includes the value of $S^{\circ}_{298} = 15.09 \pm 0.05$ cal K^{-1} mol⁻¹ calculated by Giauque and Archibald (1937) from experimental heat capacities of Mg(OH)₂ from 20 to 300 K. As calculated by Königsberger et al. (1999), the solubility studies of McGee and Hostetler (1977) and Brown et al. (1996), combined with CODATA values for Mg²⁺(aq) and H₂O(l) (Cox et al., 1989), lead to $\Delta_{f} H^{\circ}_{298}(Mg(OH)_{2}(cr)) = -926.7 \text{ kJ mol}^{-1}$ $\Delta_{\rm f} G^{\circ}_{298}({\rm Mg(OH)}_2({\rm cr})) = -831.9 \text{ kJ mol}^{-1}$ and a considerably lower standard entropy of $S^{\circ}_{298}(Mg(OH)_2(cr)) = 50.6 \text{ J K}^$ mol^{-1} . Königsberger et al. (1999) assumed that the solids in the precipitation experiments of Brown et al. (1996) possibly refer to less crystalline small brucite particles with a higher Gibbs energy and solubility. This can be ruled out for the solid used in the present study, which gave a similar solubility constant corresponding to $\Delta_f G^{\circ}_{298}(Mg(OH)_2(cr)) = -832.1 \text{ kJ mol}^{-1}$. The crystallite diameter determined by SEM analysis was in the range of 0.3-1.0 µm and for Mg(OH)₂(cr) crystals of this size the Gibbs energy contribution from the surface energy is known to be negligible (Hostetler, 1963).

3.2. Solubility Constant of Mg₂(OH)₃Cl·4H₂O(cr)

Harvie et al. (1984) pointed out that the few and widely scattered experimental data available for Mg₂(OH)₃Cl·4H₂O(cr) do

(6)

Table 3. Solutions in equilibrium with $Mg_2(OH)_3Cl\cdot 4H_2O(cr)$ and evaluation of the solubility constant (all concentrations in mol/kg H_2O)

m_{MgCl_2}	$-\log m_{H^+}$	$\logK^{\circa)}_{\ s}$	log a _{HCl}	$\log K_{s}^{\circ b}$
2.11	8.87	26.08 (25.96)	-3.83	25.94
2.67 3.26	8.80 8.74	26.10 (25.91) 26.08 (25.78)	-3.59 -3.33	25.97 25.88
3.87 4.50	8.72 8.74	26.14 (25.72) 26.25 (25.66)	$-3.09 \\ -2.87$	25.86 25.94
5.15	8.75 mean valu	26.25 (25.49) e: 26.15 ± 0.16	-2.65	$26.00 \\ 25.93 \pm 0.11$

^{a)}Calculated from $-\log m_{\rm H^+}$ measured with ROSS electrodes and activity coefficients based exclusively on the HMW model. The values in brackets are calculated with $\theta_{\rm Mg-H} = 0.062$ and $\psi_{\rm Mg-H-Cl} = 0.001$ from Roy et al. (1980).

^{b)}Calculated from the measured log a_{HCl} values.

not yield any definitive information. They selected a solubility constant assuming that the brucite-oxychloride invariant point is below 2 M MgCl₂ since Bodine (1976) observed solid phase conversion slightly above this concentration. In the present study, the solubility constant is determined directly from equilibrium data. The molal H⁺ concentrations and HCl activities measured in MgCl₂ solutions equilibrated with Mg₂(OH)₃Cl·4H₂O(cr) are summarized in Table 3. In addition to the measurements shown in Figure 3, the magnesium oxychloride formed in 2.5 M (2.67 m) and 4.5 M (5.15 m) MgCl₂ was used to determine further solubility data in 2.0 M (2.11 m), 3.0 M (3.26 m), 3.5 M (3.86 m), and 4.0 M (4.49 m) MgCl₂. The solubility constant at I = 0 is given by

$$\begin{split} \log K^{\circ}{}_{s} \left(Mg_{2}(OH)_{3}Cl^{.}4H_{2}O(cr) \right) &= 2 \log \left(m_{Mg^{2+}}\gamma_{Mg^{2+}} \right) \\ &+ \log \left(m_{Cl^{-}} \gamma_{Cl^{-}} \right) - 3 \log \left(m_{H^{+}} \gamma_{H^{+}} \right) + 7 \log a_{w} \end{split}$$

Using the $-\log m_{H^+}$ values measured with ROSS electrodes and applying the Pitzer parameters of the HMW model to calculate the activity coefficients and the water activity in Eqn. 6, the mean value of the solubility constant of Mg₂(OH)₃Cl·4H₂O(cr) is found

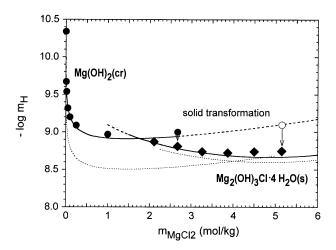


Fig. 5. Experimental and calculated equilibrium H^+ molalities in MgCl₂ solutions saturated with brucite or magnesium oxychloride. The solid lines are based on the HMW model (EQ3/6 database "data0. hmw"). The dotted lines are calculated for comparison using the EQ3/6 database "data0.pit."

to be log $K_{s}^{\circ} = 26.15 \pm 0.16$ (2 σ uncertainty interval). However, the log K°s values calculated from the experimental data in 2.11-5.15 m MgCl₂ show a slight systematic increase (cf. Table 3). The corresponding deviation between the measured $-\log m_{H^+}$ equilibrium values and those predicted by the HMW model is illustrated in Figure 5. It may be due to a slight systematic error either in the experimental data or in the calculated activity coefficients of log $\gamma_{\rm H^+}$. Harvie et al. (1984) derived the mixing parameters $\theta_{\rm Mg-H}$ = 0.1 and $\psi_{Mg-H-Cl}$ = -0.011 from emf data in HCl-MgCl₂ mixtures at $m_{MgCl_2} \leq 3 \text{ mol } \text{kg}^{-1}$ (Khoo et al., 1977), while Roy et al. (1980) performed similar emf measurements up to $m_{MgCl_2} =$ 5 mol kg⁻¹ and calculated $\theta_{Mg-H} = 0.062$ and $\psi_{Mg-H-Cl} = 0.001$ (based on the same binary parameters for HCl and MgCl₂). However, if the mixing parameters of Roy et al. (1980) are used, the log K_{s}° values derived from $-\log m_{H^{+}}$ in 2.11–5.15 m MgCl₂ show a considerable systematic decrease (cf. Table 3, values in brackets). Therefore the solubility constant is also calculated from the log a_{HCl} values measured at the end of the experiments. The calculation of log K° according to Eqn. 7, obtained by combining Eqn. 6 and 4, does not require the calculation of log γ_{H^+} . It depends only on the well ascertained binary Pitzer parameters for MgCl₂:

$$\log \mathrm{K}^{\circ}{}_{\mathrm{s}} \left(\mathrm{Mg}_{2}(\mathrm{OH})_{3}\mathrm{Cl}{\cdot}4\mathrm{H}_{2}\mathrm{O}(\mathrm{cr}) \right) = 2 \log \left(\mathrm{m}_{\mathrm{Mg}^{2+}} \gamma_{\mathrm{Mg}^{2+}} \right)$$

+ 4 log (m_{Cl⁻}
$$\gamma_{Cl-}$$
) - 6 log a_{HCl} + 7 log a_w (7)

The log K°_s values derived from log a_{HC1} in 2.11–5.15 m MgCl₂ according to Eqn. 7 show no systematic variation (cf. Table 3) and yield a mean value of log K°_s = 25.93 ± 0.11 (2 σ). Since the a_{HC1} measurements in concentrated MgCl₂ solutions are related to certain problems mentioned in section 2, the log K°_s values obtained with both approaches are taken into account and the best value is considered to be

$$\log K^{\circ}_{s}(Mg_{2}(OH)_{3}Cl \cdot 4H_{2}O(cr)) = 26.0 \pm 0.2$$

Figure 5 shows the experimental and calculated H⁺ molalities in MgCl₂ solutions saturated with Mg(OH)₂(cr) and Mg₂(OH)₃Cl·4H₂O(cr). The present experimental results predict the invariant point at $m_{MgCl_2} = 1.8 \pm 0.1$ mol kg⁻¹ and $-\log m_{H^+} = 8.95 \pm 0.05$. They are well reproduced by the solid lines calculated with the HMW model (EQ3/6 database "data0.hmw"). For comparison, the dotted lines in Figure 5 are calculated with the EQ3/6 database "data0.pit." The equilibrium constant log K°_s(Mg(OH)₂(cr)) = 16.30 included in this database leads to significant errors in the calculation of equilibrium pH values. Moreover, the magnesium concentration predicted at the magnesium hydroxide-oxychloride invariant point ($m_{MgCl_2} = 4.0$ mol kg⁻¹) is more than twice of that observed in the present study.

4. CONCLUSIONS

The solubility constants determined in the present study for brucite, log $K^{\circ}_{s}(Mg(OH)_{2}(cr)) = 17.1 \pm 0.2$, and magnesium oxychloride, log $K^{\circ}_{s}(Mg_{2}(OH)_{3}Cl\cdot 4H_{2}O(cr)) = 26.0 \pm 0.2$, confirm the values of 17.11 and 26.03 at 25°C proposed by Harvie et al. (1984) and included in the databases "data0.hmw" of the EQ3/6 code and "thermo_hmw.dat" of the GWB code. The solid-liquid equilibria in dilute to concentrated solutions of the system Mg-Na-H-Cl-H_{2}O (25°C) are consistently described

with the HMW set of ion interaction coefficients. The maximum deviation between experimental and calculated H^+ concentration is ≤ 0.08 log-units.

The equilibrium constant log $K^{\circ}_{s}(Mg(OH)_{2}(cr)) = 16.3$ (25°C) included in various other thermodynamic databases of the EQ3/6, GWB and CHESS codes is considerably too low. It arises from an erroneous standard entropy value for brucite used to calculate its standard Gibbs energy. Geochemical modeling based on these data leads to significant errors in the calculated pH value and in the magnesium concentration at the magnesium hydroxide-oxychloride invariant point. This has a considerable impact on the calculated mass balance, reaction progress and equilibrium state of magnesium salt-solution systems and hence on the predicted radionuclide solubilities in the performance assessment of a potential nuclear waste repository in underground salt mines.

Acknowledgments—This work was performed in the framework of experimental studies and site-specific model calculations for the Asse salt mine in Germany, Forschungsbergwerk Asse, GSF-Forschungszentrum für Umwelt und Gesundheit. We wish to thank our colleagues A. Bauer and K. Spieler for the XRD and SEM analysis.

Associate editor: E. Oelkers

REFERENCES

- Baes C. F. Jr. and Mesmer R. E. (1976) The Hydrolysis of Cations. Wiley, New York.
- Bethke C. (2000) The Geochemist's Workbench software package. University of Illinois, Urbana-Champaign.
- Bodine M. W. Jr. (1976) Magnesium hydrochloride: A possible pH buffer in marine evaporites. *Geology* **4**, 76–80.
- Brown P. L., Drummond S. E. Jr. and Palmer D. A. (1996) Hydrolysis of magnesium(II) at elevated temperatures. J. Chem. Soc. Dalton Trans. 3071–3075.
- Cox J. D., Wagmann D. D., and Medvedev V. A. (1989) CODATA Key Values for Thermodynamics. Hemisphere Publ. Corp., New York.
- Fanghänel Th., Neck V., and Kim J. I. (1996) The ion product of H₂O, dissociation constants of H₂CO₃ and Pitzer parameters in the system Na⁺/H⁺/OH⁻/HCO₃⁻/CO₃²⁻/ClO₄⁻/H₂O at 25°C. J. Sol. Chem. 25, 327–343.
- Fanghänel Th. and Neck V. (2002) Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. *Pure Appl. Chem.* 74, 1895–1907.
- Felmy A. R., Rai D., and Mason M. J. (1991) The solubility of hydrous thorium(IV) oxide in chloride media: Development of an aqueous ion-interaction model. *Radiochim. Acta* **55**, 177–185.
- Giauque W. F. and Archibald R. C. (1937) The entropy of water from the third law of thermodynamics. The dissociation pressure and calorimetric heat of the reaction $Mg(OH)_2 = MgO + H_2O$. The heat capacities of $Mg(OH)_2$ and MgO from 20 to 300°K. J. Am. Chem. Soc. **59**, 561–569.
- Harvie C. E., Møller N., and Weare J. H. (1984) The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₂-CO₂-H₂O system to high ionic strengths at 25°C. *Geochim. Cosmochim. Acta* 48, 723–751.
- Helgeson H. C., Delany J. M., Nesbitt H. W., and Bird D. K. (1978) Summary and critique of the thermodynamic properties of rockforming minerals. *Am. J. Sci.* 278, 1–229.
- Hostetler P. B. (1963) The stability and surface energy of brucite in water at 25°C. *Am. J. Sci.* 261, 238–258.
- JCPDS (2001) JCPDS Powder diffraction files. Joint Committee on Powder Diffraction Standards, Swarthmore, USA.

- Johnson J. W., Oelkers E. H., and Helgeson H. C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1–5000 bars and 0–1000°C. Comp. Geosci. 18, 899–947.
- Kelley K. K. and King E. G. (1961) Contributions to the data on theoretical metallurgy. XIV: Entropies of the elements and inorganic compounds. U. S. Bur. Mines Bull. 592.
- Khoo K. H., Chan C-Y., and Lim T. K. (1977) Activity coefficients in binary electrolyte mixtures HCl+MgCl₂+H₂O at 298.15 K. J. Sol. Chem. 6, 855–864.
- Knauss K. G., Wolery Th. J., and Jackson K. J. (1990) A new approach to measuring pH in brines and other concentrated electrolytes. *Geochim. Cosmochim. Acta* 54, 1519–1523.
- Königsberger E., Königsberger L.-C., and Gamsjäger H. (1999) Lowtemperature thermodynamic model for the system Na₂CO₃-MgCO₃-CaCO₃-H₂O. *Geochim. Cosmochim. Acta* **63**, 3105–3119.
- Krumhansl J. L., Papenguth H. W., Zhang P. C., Kelly J. W., Anderson H. L., and Hardesty J. O. E. (2000) Behavior of MgO as a CO₂ scavenger at the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico. *Mat. Res. Soc. Symp. Proc.* **608**, 155–160.
- Liu S.-T. and Nancollas G. H. (1973) The crystallization of magnesium hydroxide. *Desalin.* **12**, 75–84.
- McGee K. A. and Hostetler P. B. (1973) Stability constants for MgOH⁺ and brucite below 100°C. Am. Geophys. Union Trans. 54, 487.
- McGee K. A. and Hostetler P. B. (1975) Studies in the system MgO-SiO₂-CO₂-H₂O (IV): The stability of MgOH⁺ from 10° to 90°C. *Am. J. Sci.* **275**, 304–317.
- McGee K. A. and Hostetler P. B. (1977) Activity-product constants of brucite from 10° to 90°C. J. Res. U. S. Geol. Surv. 5, 227–233.
- Monastra V. and Grandstaff D. E. (1999) Kinetics of MgO dissolution and buffering of fluids in the Waste Isolation Pilot Plant (WIPP) repository. *Mat. Res. Soc. Symp. Proc.* 556, 625–632.
- Palmer D. A. and Wesolowski D. J. (1997) Potentiometric measurements of the first hydrolysis quotient of magnesium(II) to 250°C and 5 molal ionic strength. J. Sol. Chem. 26, 217–232.
- Pitzer K. S. (1991) Activity Coefficients in Electrolyte Solutions, Chap.3. CRC Press, Boca Raton, Florida.
- Pitzer K. S. and Brewer L. (1961) Thermodynamics (revised ed. G. N. Lewis and M. Randall), pp. 400, 476. McGraw-Hill, New York.
- Robie R. A. and Waldbaum B. S. (1968) Thermodynamic properties of minerals and related substances at 298.15 K (25°C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U. S. G. S. Bull. 1259.
- Robie R. A, Hemingway B. S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (10⁵ Pascals) pressure and at higher temperatures. U. S. G. S. Bull. 2131.
- Roy R. N., Gibbons J. J., Bliss D. P. Jr., Casebolt R. G., and Baker B. K. (1980) Activity coefficients for ternary systems: VI. The system HC1+MgCl₂+H₂O at different temperatures; application of Pitzer's equations. J. Sol. Chem. 9, 911–929.
- Schüssler W., Metz V., Kienzler B. and Vejmelka P. (2002) Geochemically based source term assessment for the Asse salt mine—modelling and experimental results. 12th Ann. V. M. Goldschmidt Conference Abstracts, (Davos, Switzerland., 2002). *Geochim. Cosmochim. Acta suppl.* A690.
- Stock D. I. and Davies C. W. (1948) The second dissociation constant of magnesium hydroxide. *Trans. Faraday Soc.* 44, 856– 859.
- Van der Lee J. (1998) Thermodynamic and mathematical concepts of CHESS. Technical Report LHM/RD/98/39, CIG, École des Mines de Paris, Fontainebleau.
- Wagmann D. D., Evans W. H., Parker V. B., Schumm R. H., Halow I., Bailey S. M., Churney K. L. and Nuttal R. H. (1982) The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C₁ and C₂ organic substances in SI units. *J. Phys. Chem. Ref. Data.* 11, Suppl.2.
- Wolery T. J. (1992) EQ3/6. A software package for geochemical modeling. University of California, Lawrence Livermore National Laboratory.